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Abstract. Within the New Copernicus Capability for Trophic Ocean Networks (NECCTON) project, we aim to improve the
current data assimilation system by developing a method for accurately estimating marine optical constituents from satellite-
derived Remote Sensing Reflectance. We developed and compared two frameworks by implicitly inverting a semi-analytical
expression derived from the classical Radiative Transfer Equation. First, we used a Bayesian estimation, which provided re-
trievals of the optical constituents along with their uncertainties. Moreover, using historical in-situ measurements together with
a Markov Chain Monte Carlo (MCMC) algorithm to adjust the model parameters, we were able to reduce the root mean square
Error (RMSE) between the retrieved data and in-situ observations. Second, we employed the Stochastic Gradient Variational
Bayes (SGVB) framework to efficiently approximate the Maximum Posterior (MAP) estimates of the optical constituents
while simultaneously finding the Maximum Likelihood Estimate (MLE) of the model parameters. This approach resulted in
faster computations of the optical constituents compared to Bayesian estimations, with equivalent RMSE values between the
retrieved data and in-situ observations. We showed that both, the MCMC and SGVB based algorithms, were able to find sets
of optimal parameters, which, due to correlations between them, are not unique. We conclude that both methods are consistent
with the Radiative Transfer Equation. The first method provides reliable uncertainty estimations, while the second offers a
faster alternative to standard inversion techniques, making it suitable for inversion and model optimization problems where

MCMC algorithms are intractable.

1 INTRODUCTION

Operational systems, like Copernicus, use satellite-derived data, combined with data assimilation techniques, to obtain esti-
mates of the marine ecosystem status. Traditionally, the assimilated variable is the chlorophyll retrieved data; nowadays, state
of the art biogeochemical models are progressively including refined bio-optical models able to simulate optical variables such
as Remote Sensing Reflectance, enabling the direct assimilation of multispectral reflectance measured by satellite sensors.

In this work, we aim to derive a framework to estimate the ocean inherent optical properties (IOPs), such as absorption and
scattering coefficients, from measurements of satellite-derived apparent optical properties (AOPs), like irradiance and Remote

Sensing Reflectance. The IOPs are of interest in their own, as they carry key information about ecosystem variables, such
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as chlorophyll, which can be used as indicators of the trophic condition of large marine areas (Longhurst et al., 1996). Most
importantly, the framework is intended to be employed as a module in a data assimilation schemes (Bruggeman et al., 2023),
within an operational model services, to perform Remote Sensing Reflectance assimilation in a coherent way, providing an
aligned forward and inverse procedure.

The retrieval of the IOPs of water bodies from measurements of the AOPs, is referred to as the inverse problem of ocean
optics. This is crucially important since directly measuring IOPs with an extended spacial coverage is very difficult (Gordon,
2002).

The first step to compute the IOPs is to establish the forward relationship between the AOPs and the IOPs. In this context,
the AOPs are described as a function of the IOPs using the Radiative Transfer Equation (RTE). Due to the complexity of
the RTE, this computation is carried out in simple scenarios, resulting in simplified equations that can be solved analytically.
Other approaches involve using semi-analytical equations or empirical relations, where the latter are combined with simplified
expressions of the RTE. The inverse problem is solved using these forward computations to estimate the IOPs either explicitly,
by analytically inverting the forward process (Zaneveld, 1989; Leathers et al., 1999; Tao et al., 1994; McCormick, 1996;
Stramska et al., 2000; Salama and Verhoef, 2015; Lazzari et al., 2024), or implicitly, by using an estimate of the IOPs in the
forward process and then iteratively adjusting the IOP values to match measurements of the AOPs (Gordon and Boynton, 1997;
Boynton and Gordon, 2000; Michalopoulou et al., 2009; Salama and Verhoef, 2015; Erickson et al., 2023).

In this work, we focused on an implicit inverse method, where the forward model is the bio-optical model presented in
Dutkiewicz et al. (2015) and described in section 3.1. The IOPs from the bio-optical model are the absorption, scattering and
backward scattering coefficients of four optical-constituents: water, chlorophyll-o (whose increase or decrease is associated
with changes in the density of phytoplankton) Chromophoric Dissolved Organic Matter, and Non Algal Particles. We focused
in finding the density of these optical constituents, since we estimate the former IOPs as linear combinations of the latter. The
model also depends on ad hoc parameters, originally computed as part of empirical relations from different studies (Morel,
1974; Aas, 1987; Dutkiewicz et al., 2015; Mason et al., 2016; Alvarez et al., 2023). We will optimize these parameters utilizing
historical in-situ observations.

We compared two different frameworks. The first one is a Bayesian estimation, where we used a linearization of the for-
ward process for estimating the uncertainties of the optical constituents, and Markov Chain Monte Carlo (MCMC) (Chib and
Greenberg, 1995; Andrieu and Thoms, 2008) for the uncertainty of the parameters. This approach is described in section 4.

The second approach is based on the Stochastic Gradient Variational Bayes (SGVB) framework, introduced by Kingma
and Welling (2013), and described in section 4.5. Allows for the estimation of parameters while also learning an estimate
of the posterior distribution of the optical constituents. The idea is to approximate the probability distribution of the optical
constituents given the satellite-derived Remote Sensing Reflectance using a neural network. This is the same framework used
to train generative models known as Variational Auto Encoders (VAE), which also have been used to solve inversion problems
(Zhong et al., 2019, 2021; Zhao et al., 2023; Shmakov et al., 2024). Originally proposed to solve inversion problems for
cases when the posterior distribution is intractable (practically impossible to compute), this framework provides a fast way of

estimating optical constituents, which are consistent with the forward model, and the in-situ observations.
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We employed three data sources covering a time span from 2005 to 2012: a dataset of historical satellite-derived Remote
Sensing Reflectance, a dataset from the Ocean—Atmosphere Spectral Irradiance Model (OASIM, used as boundary conditions
for the bio-optical model (Gregg and Casey, 2009)) and a set of in-situ measurements from the BOUSSOLE buoy, located in
the Ligurian basin of the northwestern Mediterranean Sea (coordinates 7.54°E, 43.22°N) (Antoine et al., 2008). The description

of the different datasets is presented in section 2.

2 DATA ACQUISITION
2.1 Ocean—Atmosphere Spectral Irradiance Model (OASIM)

As explained in Gregg and Casey (2009), “the OASIM model is intended to provide the surface irradiance over the oceans with
sufficient spectral resolution to support ocean ecology, biogeochemistry, and heat exchange investigations, and of sufficient
duration to support inter-annual and decadal investigations.” From this model, we used the surface downward direct irradiance,
the surface downward scattered irradiance, the surface photosynthetic available radiation, and the sun zenith angle, all for the
coordinates at the BOUSSOLE buoy (Antoine et al., 2008), at wavelengths equal to 412.5 nm, 442.5 nm, 490 nm, 510 nm
and 555 nm.

2.2 Satellite-derived Remote Sensing Reflectance

We used a Level 3 product provided by the E.U. Copernicus Marine Service Information (CMEMS). This is a merge of Level
2 Remote Sensing Reflectance from different satellite sources, as explain in Colella et al. (2023). This product provides pre-
processed Remote Sensing Reflectance with daily resolution, spacial resolution of one kilometer, at six different wavelengths:
412 nm, 443 nm, 490 nm, 510 nm, 555 nm and 670 nm. Due to the fact that for oligotrophic and mesotrophic water, the
absorption of water for wavelengths higher than 555 nm is dominant over the other constituents (Lee et al., 2002), we focus
our attention on the data with wavelength less or equal than 555 nm. The values at the wavelengths 412 nm and 443 nm were
assumed to be the same as the values with wavelengths at 412.5 nm and 442.5 nm in order to match the values computed with
the OASIM model.

2.3 In-situ observations

We will use three sets of in-situ observations: chlorophyll-«, particulate backward scattering coefficient and downward light
attenuation coefficient, acquired from the BOUSSOLE buoy (Antoine et al., 2008).

The three sets of measurements had 15 minutes resolution. We used only measurements between 10:00 and 14:00 GMT as
representative. After filtering the data with an absolute tilt higher or lower than 10 degrees and dose reported at a depth more
than 2 m below the nominal values (4 m and 9 m, depending on the instrument of measurement), we proceeded to average

the daily values. Due to the noise in the measurements, before averaging, the downward light attenuation coefficient data was
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filtered with an analog high pass filter, using the package SciPy (Virtanen et al., 2020) from the programming language Python
(Van Rossum and Drake, 2009), also filtering the noise with a frequency less than 4 hours.

Due to low vertical variability, the measurements of chlorophyll-o« and particulate backward scattering coefficient were
considered as the values just above the water-air interface. The former one had measurements at wavelengths equal to 442 nm,
488 nm, 550 nm and 620 nm.

Due to the height vertical variability of the downward light attenuation coefficient, the measurements were considered to be
at a depth of 9 m, with values at the wavelengths 412 nm, 442 nm, 490 nm, 510 nm, 555 nm, 560 nm, 665 nm, 670 nm, 681
nm.

For the same reasoning described in section 2.2, we only used the values less or equal than 555 nm. The values at the
wavelengths 412 nm, 442 nm, 488 nm and 550 nm were assumed to be the same as the values with wavelengths at 412.5 nm,

442.5 nm, 490 nm and 555 nm in order to match the values computed with the OASIM model.

3 BIO-OPTICAL MODEL

We now describe the Bio-optical model (Aas, 1987; Ackleson et al., 1994; Dutkiewicz et al., 2015; Alvarez et al., 2023), which
details the interaction of the radiance with different constituents in the sea, called optical constituents. In section 3.1 we present
the model of the water-leaving radiance, based on the classical Radiative Transfer Model (Dutkiewicz et al., 2015). In section
3.2, we use this model to compute the theoretical Remote Sensing Reflectance (R%SODEL) (Aas and Hgjerslev, 1999). The aim
of the inversion problem is to use this model, named forward model, and satellite measurements, to retrieve optical constituents

that are consistent with future observations, for this end, we used historical in-situ observations described in section 3.3.
3.1 Radiative Transfer Model

To simulate the water-leaving radiance, we followed Dutkiewicz et al. (2015), using a one-dimensional, three-stream radiance
model, where the vertical component of the radiance over the water column is decomposed into three interacting components

following the system of equations,

dEqgic(h,\) a(\) +b(\)

dh T cost Ear(h,2),
.Edif(h7 /\) - (l()\) + stb(/\) ) rubb()\) b()\) - Tdbb()\) )
- o Eait(h, A) + TEu(h,A) t—osg LarlhX),
Eu(hv /\) _ stb(A) N (1()\) + Tubb(/\) Tdbb(A) .
= Egit(h, \) + o Ey(h,\) — - Egir(h, \). (1)

These three equations describe how the vertical direct irradiance Ey;(h, ) is attenuated by absorption, with a()) the total
absorption coefficient, and scattered into downward Ey¢(h, A), and upward irradiance E, (h, ), b(\) the total scattering coeffi-

cient, by () the total backward scattering coefficient, r4, s and r,, the effective scattering coefficients normalized with respect
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to the backward scattering coefficients, cos (), vs and v,, the average cosines of the irradiance components, 6 the Sun zenith
angle, h the depth, and X the wavelength.

Following Dutkiewicz et al. (2015), the values for 74, rs, 7y, vs and v, are approximated as constants (see Table 2). See
Dutkiewicz et al. (2015), appendix B, for a derivation starting from the classical radiative transfer equation. For previous studies
where similar transfer models have been used, see Aas (1987); Ackleson et al. (1994); Salama and Verhoef (2015); Alvarez
et al. (2023) and Lazzari et al. (2024).

The total absorption and scattering coefficients are modeled as,
a(X) = aw(X) + aphy (A)chla + acpom(A)CDOM + anap(A)NAP,
by (A) + bpny (A)C + bnap(A)NAP,
by, w (A) + by phy () C + by Nap (A)NAP, 2)

S
S
—~

>
Nai?

I

with chla, NAP and CDOM the concentration of the optical constituents Chlorophyll-cc, Non Algal Particles and Chro-
mophoric Dissolved Organic Matter respectively; ay(\) is the water-specific absorption coefficient, by (A) and by, () the
water-specific scattering and backward scattering coefficients, aphy (M) the chlorophyll-specific absorption coefficient of phy-
toplankton, bphy (M) and by phy () the carbon-specific scattering coefficients of phytoplankton (see Table 1), C' the carbon con-
centration, which is derived as a function of chlorophyll and irradiance (Geider et al., 1997), with the chla:C ratio represented
as a sigmoid curve dependent on Photosynthetic Available Radiation (PAR), as
e~ (PAR—()/c ,

C = chla/ (92*“314_@—(1’/“?—6)/0 + @g;;,‘;) , (3)
with ©%,,, 8, 0, OMN constant parameters (see Table 2), acpom()), anap(\) and byap(\) the mass-specific absorption and

scattering coefficients for CDOM and NAP respectably (Alvarez et al., 2023), with the latter calculated as,
aCDOM()\) = dCDOMe*SCDOM()\7450)’
anap(A) = dnape~SNr(A—440)
550) Inap

bnap() = enap ()\

“4)

with Scpom, dcpoms SNAP, ANAPs ENAPs fNAP constant parameters (see Table 2), and bb,NAP = br,NAPbNAP, with br,NAP the

backscattering-to-scattering ratio of NAP.

3.2 Remote Sensing Reflectance

We used the system of equations in Eq. (1), subject to the boundary conditions

Egic(0,X) = EQA™(0,)), Egir(0, ) = EZPS™(0,X), By (00, A) =0, 5)

with EQASIM(0, X), EQASM(0, \), the direct and diffuse downward irradiance on the surface of the ocean. For this work, we

used the values from the OASIM model (Gregg and Casey, 2009). By assuming an infinitely deep and homogeneous column
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Table 1. Parameters dependent of X\ used for the Radiative Transfer Model evaluation, with the water-specific absorption coefficient from
Mason et al. (2016), the water-specific scattering and backward scattering coefficients by (), by,w(A) with values interpolated from Morel
(1974), the phytoplankton-specific absorption coefficient apny () an average of the values for picophytoplankton, nanophytoplankton, di-
atoms and dinoflagellates, collected from literature in Alvarez et al. (2023), and the carbon-specific scattering and backward scattering

coefficients byny () by phy(A) from Lazzari et al. (2024).

Anm]  aw(N) [m™1] bw(A) [m™] bb,w () [m™'] Gphy () [mz(mgChla)fl] bphy (A) [m2(mgC)71] b, phy (A) [mQ(mgC)fl]

412.5 0.00271 0.00535 0.002674 0.034 0.02102 5.38E-05
442.5 0.00574 0.00437 0.002184 0.04 0.02022 5.18E-05
490 0.0146 0.00284 0.001421 0.028 0.02054 5.26E-05
510 0.033 0.00247 0.001234 0.018 0.0205 5.25E-05
555 0.06098 0.00167 0.000836 0.009 0.01907 4.88E-05

Table 2. Parameters independent of A used for the Radiative Transfer Model evaluation, 74, s, 7w, Vs, Uu, Scpom, dcpom from Dutkiewicz
et al. (2015) who took them from Aas (1987), ©%,, O% & 8 computed as an empirical model from data in the BOUSSOLE Site (Lazzari
et al., 2024), Sxap, dnap, exap, fuap and by xap from Alvarez et al. (2023), Q. and Q; from Aas and Hgjerslev (1999), and, 7" and ~y from
Lee et al. (2002).

Parameter name Symbol  Value from literature Units
Normalized effective scattering coefficient for direct irradiation rd 1.0 -
Normalized effective scattering coefficient for downward radiation, Ts 1.5 -
Normalized effective scattering coefficient for backward radiation, T 3.0 -
Average cosine for downward scattered radiation Vs 0.83 -
Average cosine for upward scattered radiation Uy 0.4 -
- 0% 0.03 mgChla(mgC) ™"
- min 0.005 mgChla(mgC) ™"
- o 20 (mmol)m~2?s™*
- B8 500 (mmol)m~?s™!
CDOM mass-specific absorption at 450 nm dcpom 0.015 m? (mgCDOM) -1
CDOM mass-specific absorption spectral slope between 350 and 500 nm ScpoMm 0.017 nm
NAP mass-specific absorption at 440 nm dNap 0.0013 m? (mgNAP) -1
NAP mass-specific absorption spectral slope between 350 and 500 nm Snap 0.013 nm
NAP mass-specific scattering at 550 nm ENAP 0.02875 m?(mgNAP) ™!
- fnap 0.5 -
Backscattering-to-scattering ratio of NAP br NAP 0.005 -
- Qa 5.33 -
- Qb 0.45 -
- T 0.52 -
- ¥ 1.7 -
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of water (Ronald and Zaneveld, 1982), the system of equations can be solved analytically, with the final expression presented
in Appendix A.
The Remote Sensing Reflectance RMOPEL()) can be computed from the solution E,(0,\) (Aas and Hgjerslev, 1999) as

Eu,)\(o)

RMODEL(\y _ 6
" 9 Q(0) (Edir,x (0) + E4ig 1 (0)) ©

with

Q(e) _ Qaein sin(Tr/lSO(QOfG))’ (7

Q. and Q; constant parameters (see Table 2).

Due to the interaction in the interface between the sea surface and the atmosphere, a correction has to be added to the RMOPEL
(Lee et al., 2002), with the relation,
Brsup(N)

rs,down A= s
BrsidoonO) = 70 R O

®)

where T and y are constant parameters (see Table 2), R, s qown () is the Remote Sensing Reflectance just under the sea surface,
and R, ,p(A) is the Remote Sensing Reflectance just up the sea surface.

MODEL
TS

Thus, the final expression for R, is a model that depends on the optical constituents and the boundary conditions.

3.3 Model of the in-situ observations

We aim to model the chlorophyll-« as the retrieved quantity from the inversion problem. The particulate backward scattering

coefficient (by, () is modeled as the contribution to backward scattering from the phytoplankton and NAP,
by, p(A) = by phy (A)C' + by nap(A)NAP ®
where the carbon C' is calculated as Eq. (3). The downward light attenuation coefficient (k4) is computed by the relation,

Egie(h, A) + Egie(h, A) = (EgaS™(0,A) + EPS™(0,A))e Rl (10

4 BAYESIAN INVERSE PROBLEM

The model for the Remote Sensing Reflectance (RMOPEL

) depends on the density of the optical constituents chla, NAP and
CDOM. The inverse problem consists in retrieving these constituents from the forward model, and the satellite observations
(ROBS). In section 4.1 we formalize the problem and introduce the nomenclature that is going to be used in the next sections,
then in section 4.2 and 4.3 we introduce the Bayesian approach to solve the problem (Rodgers, 2000), as well as the approach

used to optimize the model.
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4.1 Formal statement of the problem

We proceed to call y € ) the set of satellite measurements, modeled with a forward model plus noise,

y(\) = Rp{OPFE(2,2(0), M A) + (), (1D
where

z(X) = (Bgr>™(0, ), Egr>™(0,1), 0, PAR)

are available simulated quantities, x € X, gathered from the OASIM model,

A :(TS, TusTdy Vs, Vu, aw()\)7aphy(>\)7bW(A)7 bphy()‘)7 bb,W()\)7bb,phy()\)a

depoms Scpom Anaps SNAP; ENAP, fNAP, Or NAP, O O, 3,7, Qu, Qb T, ),
is a set of parameters, and
z = (chla, NAP,CDOM) (12)

is a set of unknown or latent quantities z € Z, the optical constituents.

The inverse problem aims to retrieve the unknown quantity 2% given a set of measurements and OASIM-data {yd,z¢}7_,
performed during the day d, with n the number of measurements.

Since we have measurements for a discrete set of wavelengths (at a depth h = 0 m, with the exception of k4, atadepthh =9
m) the forward model is discretized as a five-dimensional vector, with each component representing values at different wave-
lengths. To distinguish between continuous functions and their respective discretization, A is used as a subscript, e.g. Eg;,
represents a component of the five dimensional vector E ;- with magnitudes Eg;,-(0,\), with A = (412.5,442.5,490,510,555)
nm. In similar fashion, =) = (Eair, x, Eair, x, Eu 1,0, PAR) is a component of the 5 x 5 tensor «. Using this notation, the mea-
surements and OASIM-data of the day d are written as (y?, x?).

Noise is added to the model to account for the measurement uncertainty and the discrepancy between the forward model and
the actual underlying function that governs the process, referred to as model uncertainty. In this work, we assumed that € is a
random Gaussian variable with mean zero, and covariance ..

As a consequence, the model of the measurement is a random variable with a Gaussian probability distribution
prA(y|va) :N(R%ODEL(Zam;A)vze)' (13)
4.2 Bayesian approach to retrieve the latent variable

Under the Bayesian framework (Rodgers, 2000), the probability of the unknown quantity z, p(z|y,x), given the true probability

distribution of the measurement p(y|z,x), can be retrieved using the Bayes theorem,

_ plylz x)p(z|z)
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Table 3. Root Mean Square Difference (RMSD) between in-situ measurements and the satellite measurements of R..; in the Mediterranean

Sea, obtained from a validation of the Copernicus Dataset (Colella et al., 2023).

Rrsx  RMSD(R,s))
Rysaizs  1.5x1073 sr
Rys 4425 1.2x10 3sr
Rys,490 1x1073 sr
Ryss510  8.6x107%sr
Ryssss  5.7x107%sr

The probability distribution p(z|y, ) is called the posterior probability distribution, or just the posterior, p(y|z,x) the likeli-
hood, and p(z|x) the prior probability distribution, or just the prior.

Since we are dealing with random variables, computing the posterior is equivalent to retrieving z. In the case when this
computation is not possible, common approaches attempt to estimate the value of z that maximizes the posterior, named
Maximum A-Posterior (MAP) estimate.

In the case of little knowledge of the value of z, it is common practice to use an improper prior, p(z|x), as an uninformative
prior, where each value of z is equally probable. This approach gives rise to the Maximum Likelihood Estimate (MLE).

For this work, we used a log-normal distribution prior (Campbell, 1995) for the latent variable z, with parameters i, .
This is equivalent to making the change of variable Z = log(z) with a Gaussian prior with mean j, and covariance 3,. With

MODEL
Rrs

this prior, and the Gaussian likelihood which can be derived from the forward model , we can define the loss function

£y a2 A) = —2log(pa (24[y?, 2?))

zd =d ~ 1
—_ (yd _R%ODEL(BZ ,a:d;A))TEgl(yd—R%ODEL(eZ ;:I:d;A))"‘(Zd_Mz)TZz 1(Zd_MZ)_|_CO (15)

with ¢y a constant. It can be shown that minimizing the loss function in Eq. (15), is the same as maximizing the posterior
(Rodgers, 2000).

As an estimate of ., we used a diagonal matrix, with elements equal to the square of the Root Mean Square Difference
(RMSD) between in-situ measurements and the satellite measurements of R, in the Mediterranean Sea, shown in Table 3,
obtained from a validation of the Copernicus Dataset (Colella et al., 2023).

For the prior parameters, we used i1, = 0 and X, = Tx*«, with 1 a diagonal matrix of dimension 3 x 3, and « a hyperparameter
to be determined. These parameters were chosen in order to recover the equivalent to a ¢ regularization. In Appendix B we

explain the criteria used to tune a.
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To retrieve Z* = {z D_,, we want to minimize L7 with respect of 2 for every day d. We can perform this retrieval for

all the historical data by minimizing the loss function,

Z* = argmin ; L7
D
= argminZZﬁz’d(yd,:rd,id;A). (16)
d=0

4.3 Model optimisation scheme

We want to optimize the forward model RMOPEL(z xd; A)

HOBS = {(kd®°* by, »° chla®*™)}D_  where D is the number of days, kd®°* is a vector of dimension five, bp,?°* a

by adjusting the parameters A, using the in-situ observations

vector of dimension three given that there are only in-situ observations for \ = (442.5,490,555)nm, and chla®® a scalar.
Therefore, HOBS is a set of nine dimensional vectors defined for each day.

HMODEL ' 5 nine dimensional

In order to take into account missing data, we introduce the modeled observation function,
vector analogous to F/BS, and the presence-absence nine dimensional vectors 1¢, with components equal to one if there are
observations and zero otherwise.

Finally, we defined 7 as the scalar product between I¢ and HMOPEL for each day,

H(Z,X;A) = {1%- gMOPELY D
= {1 (kd(z%2 A), by (2% 2%, A),chla) } 1, a17)
where Z = {z4}2_| and X = {z?}]_,.
We aim to optimize the parameters A from the estimated probability distribution pa(y|z,), by finding the Maximum
Likelihood estimate of the parameters, given the in-situ observations. Using a Gaussian Likelihood with unitary covariance,
we arrive to an expression for the negative log likelihood equivalent to a 2 norm,

rH_ 25:0 ||Hd(Z*;X7A) _ ]_]OBS,(,iH2
D

(18)

where || - ||2 is the 2 norm, taken over a space with a dimension equal to the number of observations performed during a day
d. Minimizing this loss function would be equivalent to finding the Maximum Likelihood Estimate, but instead, in order to
have an estimate of the uncertainty, we proceed to use a Markov State Monte Carlo algorithm to approximate the posterior

probability distribution.
4.4 Optimization algorithm and Markov State Monte Carlo

We aim to use an algorithm that can estimate the latent variable z and his uncertainty, in an operationally efficient way. To
do so, in the next section we describe how we minimized the loss function £* described in section 4.2, which is equivalent to

finding the MAP estimate.

10
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The final posterior distribution is not a Gaussian distribution, given that the forward model is a nonlinear function of z.
Instead, to estimate his uncertainty in an operationally efficient manner, we approximated the posterior distribution with a
Gaussian by linearizing the forward function around the MAP estimate.

In contrast, since the estimation of the mean and uncertainty of the parameters A is not intended to be part of an operational

system, we approximate the posterior by using a Markov State Monte Carlo Algorithm described in section 4.4.2.
4.4.1 Estimation of the latent variable

We performed the minimization of £* using the Adam algorithm, with a learning rate of 0.03 and all the default parameters
from the library PyTorch (Paszke et al., 2019), with 90% of all the historical data per iteration, selected randomly across the
entire time span. The remaining 10% was used as test set. A copy of the code availability for every algorithm described in this
work is in Soto (2024).

After Z *, the set of latent variables for the entire training set, has been retrieved, in order to estimate the uncertainty, we

. . zd ~
linearized RMOPEL (2" x: A) around 2%, as
MODEL, 3% ..
R, (e* ,x;A)
. pPMODEL/ % _ . MODEL/ 3% .. d _ zdx
~R,; (e ,x;A)+ VR (€, A)|(zamzany (29 — 2)

= RMOPPL( o)+ K (2 — 27, (19)
Then, as shown in (Rodgers, 2000) the covariance matrix of the approximate posterior can be written as
Yo = (KTS 'K +371)7L (20)

In this way, the uncertainty is computed as the root square of the diagonal elements of > za..

Then, since the resulting retrieved values Z* are normally distributed, Z* = exp(Z *) has a log-normal distribution and
thus, the uncertainty can be computed with the 68% confidence interval (here we match the convention of using the standard
deviation as uncertainty for variables with normal distribution).

The uncertainty for derived variables like k£d and by, 5, is computed with standard error propagation (Arras, 1998).
4.4.2 Markov State Monte Carlos algorithm for optimizing the model parameters

In order to estimate the posterior distribution of the parameters, p(A|H9BS Z,X ), we used the Metropolis-Hasting Algorithm
(Chib and Greenberg, 1995; Andrieu and Thoms, 2008). This approach returns samples from a probability density function
7(x) by defining a transition probability,
p(z,y) =q(z,y)al(z,y), v #y
[Ty, z) ] :
a(x,y) =min | ————= 1| if w(x)q(z,y) >0,
(o) = min | T it rtovte
=1, otherwise (21)
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where ¢(z,y) is a proposed transition probability from z to y, and «(z,y) is the acceptance probability. With this definition, a
sampling from 7(x) is performed by, first selecting an initial state x(, then computing the probability a(x,21) of moving to a
new state 21 sampled with a probability density g(zq,x1). If the movement is performed, then we sample the new state x; and
repeat the process with the new state as the original state, if the movement is not performed, then we sample the original state
and repeat the process.

Some drawbacks are known for this algorithm, for example the iterations have to be performed multiple times before the
algorithm converges close to the mode of the distribution, or that successive iterations are strongly correlated, so many iterations
have to be performed in order to obtain uncorrelated samples. These difficulties get increasingly stronger as the dimensionality
of the sampling space gets bigger. In our case, to mitigate some of these effects, we choose to perturbed our parameters in such
a way that we end up with a fourteen dimensional space.

A further complication is that the probability density that we want to sample depends on Z*, the latent variable. This means
that, each time we want to do an iteration of the Metropolis-Hasting Algorithm, we would need to find the MAP estimate of
Z, increasing the computational time. To mitigate this problem, we proceed to use an estimate Z, consisting of few iterations
towards the MAP estimate.

Our model for the negative log likelihood is the loss function £# described in 4.3, which give us the expression for the

Likelihood
p(HOBS|A, Z, X) o 3LM(HOPS Z,X ) (22)

The density function, 7(x), that we want to sample from, is the posterior probability for the parameters. By using an improper
prior, using the Bayes theorem, substituting the optimal Z* with an approximation Z, and using a symmetric probability

q(As, Aj) = N(A;, oy X 1), we arrive to the acceptance probability,
a(A’L)A,]) = min |:€7%(Z:H(HOBSwZ*,X;Aj)*‘C’H(HOBS’Z*7X’Ai)) 9 ]-i| ) (23)

where « is a hyperparameter, whose value is important for the convergence speed.

The perturbation of the parameters was performed in a non-standard way, since all the parameters A have an interpretation
in the forward model. Consequently, we consider the literature values A° as close estimations of the optimal values and look
for a set of parameters A* = §% A, where d, is a vector of small perturbations from the unity.

In order to preserve the shape of the absorption of chlorophyll as a function of the wavelength ayny (), the vector aphy

*
phy

chlorophyll byny (A) was approximated as a linear function of A, so we perturbed the tangent and the intercept of the linear

was perturbed as a¥,, = 6aphy Qphy, With 6aphy a learnable scalar and appy the literature values. The scattering coefficient of
interpolation. The backward scattering coefficient by, pny () was perturbed in the same manner. The parameters dcpom, br NaPs
Scpom, OB 0% ., B, 0, Q, and Q, perturbations consisted in a per parameter scalar multiplication. All the other parameters
were left unperturbed.

In this manner, the perturbations §, were initialized with ones, then using alternate minimization (AM), alternating between

finding the MAP estimate of Z* and the MLE of the parameters, we reach values for J, that we expected were close to
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the mode of the posterior. Next, we used the Metropolis-Hasting Algorithm, waiting until the mean value of the different
parameters converged. Since consecutive samples are strongly correlated, we compute the length such that consecutive samples
weren’t strongly correlated, in our case, two hundred and eighty iterations. Finally, we ran forty times the Metropolis-Hasting
Algorithms, with random initializations, close to the AM output. For each of them, we drop the first two thousand iterations to

ensure convergence, and sampled only non correlated values.
4.5 Neural Network Based Inversion Method: Data Informed Inversion Method (DIIM)

As the dimension of the posterior increases, MCMC methods became increasingly more challenging, and even point-ways
estimates, like the one obtained with Alternate Minimization, could not converge, due to the non convexity of our models.
As an alternative approach, we present a framework based on the Stochastic Gradient Variational Bayes (SGVB) framework
(Kingma and Welling, 2013).

The SGVB framework considers a random latent variable z € Z sampled from an unknown distribution pa-(z), and a
random variable y € ) sampled from a distribution ps~(y|z) conditional on the latent variable z. For example, y could be
measurements from a known physical process, conditional on unknown physical hidden processes.

The aim is to efficiently approximate the Maximum Likelihood estimate of the parameters A,

A” = argmax, (pa(y))- (24)

For this end, the posterior probability distribution py (z|y) is estimated as a parameterized function g4 (z|y). It can be shown
that finding A* and ¢* such that

A%, ¢" =argmin, ,Lr1BO,

Lprpo = —DrrL(4s(2Y)[[PA(2)) + Eq, (1) [log (pa(y]2))] (25)

were D, (+]]-) is the Kullback-Leibler divergence (DK divergence), an asymmetric, positively defined measure of the proxim-
ity between two probability distributions (Shlens, 2014), pa(z) is the prior distribution of the latent variable z, and Ey () []
stands for the expected value over the probability distribution g4 (z|y), is approximately equal to finding the Maximum Likeli-
hood estimate. This is due to the fact that £z, go, where ELBO stands for “Evidence Lower Bound”, is a lower bound of the
data log-likelihood log pa (y) (see appendix C).

If the SGVB framework is used with the neural networks as the approximate probability distributions g, (z|y), then the
neural network architecture and minimization scheme is known as Variational Auto-Encoders (Kingma and Welling, 2013),
where the model ¢4 (2|y) is usually called the “Encoder”, and pa (y|z) the “Decoder”.

Sohn et al. (2015) generalized this framework for what they called, Conditional Variational Auto-Encoders (CVAE), where
the likelihood and posterior probabilities are allowed to be conditional distributions on a third set of random variables x €
X,y ~pa(ylz,z), and z ~ g4(z|y,x). This is the final configuration we used, but instead of training a generative model as
CVAE are usually used to, we used it to solve the inversion problem while simultaneously finding approximate values for the

parameters A*, as explained in section 4.5.1.
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4213, %) i G HIZ. 2)
- A
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Neural Network e
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e, = N(0,1)
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Y : Satellite-derived measurements /}0 : Parameter initial values
X : OASIM-data A : Estimate of the optimal parameters
H : Estimate of the in-situ observations Z : Estimate of the retrieve optical constituents
Y : Estimate of the satellite-derived measurements

Figure 1. Diagram of the Stochastic Gradient Variational Bayes (SGVB) framework, adapted for the inversion problem, where the estimated
7 is retrieve using a parameterized probabilistic function ¢4 (z|y,x), which for our case, is a convolutional neural network (diagram in Fig.

2) and who’s parameters ¢ are learned simultaneously as the parameters A.

4.5.1 Stochastic Gradient Variational Bayes framework for the Inversion Problem

CVAEs are commonly used to train a generative model pa (y|z, ) from a probability distribution p(z|x) that is easy to sample,
in order to generate samples that well approximate the target probability distribution (Doersch, 2021). They have been used to
solve inverse problems, like image recovery (Zhong et al., 2019, 2021; Zhao et al., 2023), unfolding in high energy physics
(Shmakov et al., 2024), among other applications. In contrast to previous applications of VAEs and CVAEs to inverse methods,
in this work, instead of first training a CVAE with latent variables that lack a physical interpretation, we directly used the SGVB
framework for the inverse method. Here, pa (y|z, ) is the likelihood described in Eq. (13), where A represents the parameters
of the forward function that we aim to optimize, and the latent variable z is the vector that we want to retrieve.

To do so, following the SGVB framework, we used a neural network g4(z|y,«) (diagram shown in Fig. 2) as an approxi-
mation of the posterior p(z|y,x). As described in Kingma and Welling (2013), the Lg1, 5o is approximated by an empirical

expression of the expectation value. The final expression for the loss function is,

L

Lprpo~ Y log(pa(ylz, @) + Drr(qs(2|y,@)|Ipa(z|2)), 2~ qg(2ly, ). (26)
=1

The expression for pa (y|z;,x), used to learn A and ¢, was different from the expression used in section 4.4 since to train

the neural network, all the input data was scaled between zero and one. Also, we included a term which depends on H°BS to
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include the in-situ measurements. The final model used was

L
_ ) 5d
> log (pa(ylz)) Z — RMOPEL (™ g, A))T8 7 (y! — RMOPPE(e™ 2% 0))
=0

+ (Hd( ) HOBS,d)Tg;{l (ﬂd(eid,X;A) _ HOBS,d) (27)

where ¥ ! was the equivalent to the covariance matrix introduce in section 4.4, but transform according to the scaling, Z;ﬁ
was chosen in order to have the equivalent to £ from Eq. (18), L is the number of samples used per iteration, to approximate
the expected value. We performed experiments with L =1, L = 10 and L = 100. The performance of using higher values for
L was not significantly higher, for which, we decide to use L = 10.

The neural network used was composed of two parts, one having as impute the mean /1,4, and the other one, the covariance
matrix Y, of a Gaussian probability distribution, in consequence, the DK divergence between two multivariate Gaussian is,
> |
2 [|Z,.]

Drer(g0(29)llpa(2)) = +Te(S50 %) + (g, — )35 (g, — 1) — dim, (28)

where || stands for the determinant of the scaled covariance matrix used for the prior introduced in 4.2, Tr(A) stands for the
trace of a matrix A, and dim, = 3, the dimension of z.

Finally, we added a /5 regularization for the parameters A, since it helped for the convergence of the Neural Network.
4.6 Architecture and Training of the Neural Network

As illustrated in Fig. 2, the Neural Network (NN) is composed of three sections, the first part has two hidden layers, whose
function is to reduce the dimensionality of the input layer by projecting it into the space of the in-situ observations. To achieve
it, this part was trained separately from the rest of the NN. This preprocessing was done to facilitate the convergence of the
final output to values that are physically plausible. The second and third parts are the predicted mean of the latent variable 1,
and the Cholezky decomposition L, of the covariance matrix ¥, = Lg; L. We choose as output of the NN the Cholesky
decomposition, to ensure that the final covariance matrix is positive-defined.

To decide the best hyperparameters of the neural network, we used the library Ray Tune (Liaw et al., 2018), a python library
designed for parameter tuning, together with the Bayesian Optimization HyperBand algorithm (Falkner et al., 2018) to search
in the hyperparameter space. These include the number of hidden layers, the size of the hidden layers, the learning rate, the
different moments for the Adam Algorithm used to train the neural network, and the size of the mini-batches.

In the same manner as with the MCMC algorithm, we used the same 90% of the data for training, from which, we select
randomly five percent of it as validation for each iteration of the hyperparameter search.

Also, we did an exploration within the activation functions, finding the CELU activation function as the one that returned the
best results. The CELU function is similar to the Rectified Linear Unit (ReLU) function, where instead of being the identity
for positive inputs and truncating to zero for negative inputs, truncates to minus one for negative values and makes a smooth

transition between the identity part and the truncation part (Barron, 2017),

CELU (x) = max(0,z) + min(0, cee® “ —1). (29)
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O CELU Layer Mean Hidden Mean Hidden Mean Hidden Mean Hidden Mean Output
Layer 1 Layer 2 Layer 3 Layer 4 Layer qu

—

Input Layer Hidden Layer 1 Hidden Layer 2 >C)_> C _»C C _»O_»[]

— —

Cov Hidden Cov Hidden Cov Output

Layer 1 Layer 2 Layer L,,

0 O~ O~ [-O~

Figure 2. Diagram of the Neural Network (Soto, 2024) used as the parameterized probabilistic function ¢4 (z|2,y). It is composed of three
sections, the first two hidden layers reduce the dimensionality of the input layer by projecting it into the space of the in-situ observations.
The output of the second layer is the input of the layers that learn the mean value of the latent variable p., and dose that learn the Cholezky
decomposition L, of the covariance matrix. The dimension of the hidden layers and the number of hidden layers are tuned using Ray Tune
(Liaw et al., 2018).

with «, a hyperparameter also tuned with Ray Tune.

A diagram of the neural network ¢4 (z,y,x) is presented in Fig. 2, which is part of the framework described in Fig. 1.
To train the neural network first the measurements and OASIM-data (X ,Y) are passed to it returning an estimate for the
mean and the covariance matrix of the latent variable Z. From these estimates, a random sample is computed, 7= e+ 2.€,,
€. ~N(0,Z), and subsequently used as an estimate in the forward model RMOPFL (egd,xd; A), and with the observation

function H(Z,X;A).

S RESULTS

As described in section 4.4.2, we tuned twenty-six parameters, multiplying them by fourteen perturbation factors. Follow-
ing Carmichael et al. (1997), the sensitivity of the Remote Sensing Reflectances, downward light attenuation coefficient and

backward scattering coefficient can be computed by calculating the partial derivative with respect of the different parame-
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ters (ORRrs/06;, Okd/06;, Oby, ,/09;), named the local sensitivity coefficients, and normalized with respect to the sensitivity

coefficient (Rrs/d;, kd/d;, by /0;) to obtained dimensional quantities. The results can be observed in Fig. 3.
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Figure 3. Sensitivity of (a) R,s, (b) kd and (c) by, with respect to the perturbation factors J; evaluated at §; = 1, the box plots represent the

quartiles of the sensitivity for each day.

We noticed that Rrg and by, ,, share a strong variability in the sensitivity with respect to the backward scattering coefficient
of phytoplankton by, 5, and backscattering-to-scattering ratio of NAP b, xap as well as the parameters OMin 09 3, o, which
form part of the chla : C ratio relation described in Eq. (3). This agrees with the seasonal variability in the abundance of the
different phytoplankton functional types (Lazzari et al., 2012), as well as the variability in concentrations of pollution (Bodin
et al., 2004). With this observation, we expect that using only one set of parameters for the full year would result in suboptimal
predictions. Nevertheless, we proceed to find the optimal parameters that described the full historical data set.

To do so, we performed a MCMC algorithm as described in section 4.4.2. An example of the distribution obtained for
each parameter can be observed in Fig. 4. The original values as well as the mean and standard deviation for the A-dependent
parameters can be appreciated in Fig. 5. Finally, the original values as well as the statistics obtained using the MCMC algorithm
for the A-independent parameters can be appreciated in Table 4.

In order to assess the normality of the final distributions, we performed a Kolmogorov-Smirnov test. Using a threshold
value of 0.05, we arrived to the conclusion that most of the parameters agree with the hypotheses that they follow a Gaussian
distribution, with the exception of 3, and Scpom. For this reason, except the parameters just mentioned, we can use the standard
deviation as a measure of the uncertainty. For # and Scpowm, we reported the standard deviation as uncertainty, remarking that

the final result didn’t agree with the hypothesis that they followed a Gaussian distribution.
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Figure 4. Result of the Metropolis-Hasting Algorithm for the parameter ), using the transition probability shown in Eq. (23), with initial
conditions close to the value obtained after performing Alternate Minimization. (a) Evolution of the parameter after each iteration of the

algorithm, (b) final probability density estimated as a Gaussian distribution.
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Figure 5. Original values (dashed line), final values using the SGVB framework (blue) as well as the mean and standard deviation (gray) for
the A-dependent parameters (a) absorption coefficient of phytoplankton a,ny (A), (b) scattering coefficient of phytoplankton by, (A) and (c)
backward scattering coefficient of phytoplankton by pry (A).

We also computed the covariance matrix between the perturbation factors J;, which can be appreciated in table 5. We

observed strong correlations between dcpom and Scpoym (evident due to the Eq. (4)), between 3 and Scpom, and in less degree
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Table 4. Original values, final values obtained using the SGVB framework, as well as the mean, standard deviation and Kolmogorov-Smirnov

test coefficient for the sampling with the Metropolis-Hasting Algorithm for the A-independent parameters.

Original CVAE result MCMC result KS test for KS p-value

value normality for normality
depom [m?(mgCDOM)™']  0.0150 0.0151 0.0146 £ 0.0020 0.0524 0.7525
Scpom [nm] 0.0170 0.0163 0.0122 £ 0.0020 0.1114 0.0348
Qa 5.3300 5.9301 5.3145 £ 0.4657 0.0552 0.6932
Qb 0.4500 0.4265 0.4459 £+ 0.0314 0.0869 0.1683
min [mgChla(mgC) ] 0.0050 0.0050 0.0058 £ 0.0005 0.0755 0.3053
0%, [mgChla(mgC)~*] 0.0300 0.0298 0.0301 £ 0.0024 0.0696 0.4019
B [mmolm~2s™1] 500.0000 616.2043 536.1500 £ 35.3500 0.1387 0.0038
o [mmolm~2?s™"] 20.0000 19.9735 24.3895 £+ 1.8762 0.0927 0.1203
br,NaP 0.0050 0.0045 0.0052 £ 0.0005 0.0822 0.2180

Table 5. Correlation matrix between the perturbation factors ;, computed using the samples from the Metropolis-Hasting Algorithm.

0iyi= apa  bphy,T  bphyint  Dophy, T Dophyme  depom  Scoom  Qa Qv G Ochia B o bonar
g 1.00
bowr 0.5 1.00
bowae  -0.16  0.01 100
b 005 021 0.0  1.00
by phy,ime -0.06  0.15 0.39 0.07 1.00
dcpom 0.21 0.23 0.22 -0.02 0.43 1.00
Scpom 0.24 0.31 0.24 -0.19 0.38 0.73 1.00
Qa 0.23 0.28 0.24 -0.15 0.22 0.41 0.62 1.00
Qv -0.11 0.25 -0.01 0.32 -0.03 0.02 -0.02 -0.19 1.00
2?“{}, 0.08 0.11 -0.09 0.13 -0.12 -0.08 -0.18 -0.20  -0.06 1.00
@Shla 0.06 -0.01 0.02 0.10 0.08 -0.17 -0.10 0.08 -0.10 -0.37 1.00
Jé] -0.13  -0.21 -0.13 0.22 -0.21 -0.50 -0.73  -049 -0.05 0.11 -0.02 1.00
o -0.03 -0.15 0.07 0.25 0.15 0.14 -0.04 -0.16 0.01 022 -0.06 0.08 1.00
by, NAP 0.00 -0.11 -0.10 -0.20 -0.09 0.04 0.07 -0.03  0.13 0.11  -0.29 -0.06 0.07 1.00

between dcpom and by phy,int; Scpom and by phy, i, @« and depom, Qa and Scpowm,

and dCDOM .

min and ©Y,,, 8 and Q,, and between 3

As described in section 4.5, we also used the SGVB framework to find an optimal parametrization. To compare them with

the output obtained with the MCMC algorithm, we evaluated the MAP estimates of the optical constituents z given each set of

parameters. The results can be appreciated in table 4 and Fig. 5. Taking into account the uncertainty of the MCMC results, and
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using the 95% confidence interval, we see that only the parameters Qq, Qp, OMin, O, and b, nap agree in the final values.
Nevertheless, in order to assess the ability of the resulting parameters to optimize the forward model, we computed the MAP
estimate of the latent variable z for the test set of the historical data, a set of data that was not used for training of the neural
network in any way, or to estimate the parameters in any of the methods.

These estimates were computed using the literature values, the mean values obtained after performing the MCMC algorithm,
and with the parameters obtained with the SGVB framework. We find that, in terms of the Root Mean Square Error (RMSE)
between measurements and MAP estimates, values that can be appreciated in table D1, both methods optimized the forward
model, and for some measurements, including the in-situ observations of chlorophyll, the parameters obtained with the SGVB
framework outperform the MCMC results. We interpret the disparity between results using both methods, by arguing that the
posterior probabilities that we are attempting to maximize are multi-modal, the Alternate Minimization in combination with
the MCMC algorithm finds one set of locally optimal parameters, while the SGVB framework finds a different one.

The most noticeably advantage of using the SGVB framework, is that it provides an efficient way of computing estimates
of the optical constituents z, which by construction, are also consistent with the forward model, with optimal RMSE between
measurements and estimates. Since they are computed with a neural network, the computational time outperforms the standard
implicit inversion methods, required in cases where the expression of the RTE is too complicated to invert it analytically.
For completeness, in tables D2 and D3, we also present the Pearson correlation coefficients and the relative Median absolute
deviation (rMAD) between measurements and estimates, and the timelines for the values estimated in Fig. D1, D2 and D3.

This timelines illustrates the ability of the inverse methods to describe the seasonal variability. We also notice that the
uncertainty increase for days when the discrepancy between measurement and prediction is bigger, reaffirming the advantages
of including uncertainty in the predictions. For the derived quantities kd(\) and by, (), for some cases, the standard error
propagation method under-estimated the uncertainty, especially for kd(\) with A greater than 510 nm.

Nevertheless, the values of Rrs computed with the estimated optical constituents are consistent with the satellite observa-
tions for all the wavelengths computed, as can be confirmed with the values of RMSE in table D1, rMAD in table D3 and

correlation in table D2.

6 Discussion

In the last years, there has been an increasing number of applications of neural networks in earth sciences, like forecasts of the
El Nifio-Southern Oscillation (ENSO) by using historical simulations and a convolutional neural network (Ham et al., 2019),
fusion of satellite data (Chapman and Charantonis, 2017; Denvil-Sommer et al., 2019; Bocquet et al., 2020), classification of
regions on the ocean (Richardson et al., 2003; Saraceno et al., 2006), finding drivers of net primary productivity using self or-
ganizing maps (Lachkar and Gruber, 2012), reconstruction of oceanographic variables (Martinez et al., 2020; Pietropolli et al.,
2022), classification of the anomalies of water leaving radiance (Mustapha et al., 2014), data reconstruction (Manucharyan
et al., 2021; George et al., 2021), inversion of oceanographic variables (Brajard et al., 2006; Irrgang et al., 2019; Dessailly,
2012), pattern recognition (Maze et al., 2017; Jones et al., 2019; Jones and Ito, 2019; Boehme and Rosso, 2021; Desbruyeres
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et al., 2021), forecast imposing physical constrains (De Bézenac et al., 2019; Erichson et al., 2019), increase of the resolution
of modeling (Barthélémy et al., 2022), among others.

Our work makes use of a neural network to approximate the posterior probability distribution of optical constituents in
the sea by employing the SGVB framework. As described in section 4.5.1, we minimized the ELBO loss function, which
simultaneously optimized the forward model by finding the MLE of the parameters, deriving in-situ biogeochemical parameters
for reflectance observations, linking the neural network procedure to an interpretable model. The novelty of our approach is
the implicit inclusion of the model uncertainty in the results. In fact, the output approximates the true MAP estimate given a
set of measurements.

On the other hand, our results with the SGVB framework under-estimated the uncertainty of the optical constituents, a com-
putation that is of crucial importance for multiple applications, like objective comparison of simulations against observations,
efficient assimilation of data with methods like the Kalman Filters, among others (Brankart et al., 2012). The requirement of
reliable uncertainty estimations lead us to use only the point-ways estimate of the neural network. Furthermore, we explored
the Bayesian approach, approximating the final posterior distribution of the optical constituents, ps (z|y, ), with a Gaussian
probability distribution. This method returns estimates with reliable uncertainty estimations that can be used in real operational
systems.

In particular, in addition to the optical constituents, our aim was to find the optimal model with respect to all the in-situ obser-
vations for the entire time span. This ambitious goal made the final results suboptimal for some individual measurements. For
example Salama and Verhoef (2015) used a similar forward model with the aim of estimating the downward light attenuation
coefficient at a wave-length of 490 nm, kd(490), at different depths, obtaining a rMAD of 11.84%, while our result using the
MCMC parameters presented a rMAD value of 22%. We noticed that by optimizing only one in-situ measurement, we could
find a set of parameters that made that measurement more precise. Nevertheless, we decided to use the parameters presented,
to balance the global accuracy. For example, in terms of the rMAD of the Remote Sensing Reflectance at a wavelength of 490
nm, R,5(490), we obtained a value of IMAD of 1.2%, outperforming previous works.

Our approach also differs from other works on Bayesian estimation of optical constituents (Gordon and Boynton, 1997;
Boynton and Gordon, 2000; Michalopoulou et al., 2009; Erickson et al., 2023), since we are employing a three steam model,
derived from the Radiative Transfer Model (Dutkiewicz et al., 2015), and using it to derived the in-situ observations for all
the wave-lengths available. This feature allows scientists to understand the automatic learning process in terms of meaningful
physical parameters.

The approach can be extended in different directions, in particular, the addition of more optical constituents, which will be
facilitated once the information of the new satellite missions PRISMA (Hyperspectral Precursor of the Application Mission),
with 12 nm spectra resolution ranging from 400 to 2500 nm, and PACE (Plankton, Aerosol, Cloud, Ocean Ecosystem) with a

5 nm resolution ranging from 350 to 890 nm, is used as input of the system.
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7 CONCLUSIONS

470 By utilizing the Bayes theorem and linearizing the forward function, we achieved the inversion of the optical constituents, with
an estimate of the uncertainty. The latter is fundamental for the assimilation of Remote Sensing Reflectance.

By using an MCMC algorithm, we computed a set of parameters that optimized the forward model, and showed that the
solution was not unique by using the SGVB framework. Moreover, the SGVB framework can be used as an alternative to
find point-wise estimates of optimal parameters, and also as an efficient way of computing point-wise estimates of the optical

475 constituents.

Regarding the computational advantages of the SGVB framework, as long as the uncertainty is not required, it is the best
option to estimate the optical constituents in operational systems. Nevertheless, the posterior probability learned by the neural
network under-estimated the uncertainty of the result, which makes the MAP algorithm preferred when the uncertainty is a
requirement. Since the computational time for the MAP estimate depends from the initial conditions, we proposed to use the

480 SGVB estimates as initial conditions for the MAP algorithm, which, by making experiments with our current implementation,
we found that is capable to reduce the number of steps more than 50%.
For future work, it would be important to apply and verify the accuracy of the approach with more optical constituents and

to test Remote Sensing Reflectance assimilation in a biogeochemical model.

Code and data availability. The last version of the model is publicly available from GitHub at https://github.com/carlossoto362/OGS_one_

485 d_model, under the Licence Apache, version 2.0. The version used to produce the results is archived on Zenodo, as are the input data and
scripts to run the model and produce the plots for all the simulations presented in this paper, under the DOI 10.5281/zenodo.13741206 (Soto,
2024).

Two examples of how to download the data and use the code are available in google colab at
— Bayesian inversion example: https://colab.research.google.com/drive/IROAXHcGPcubT5Ir_1nlrow_cYhTk8Qd-?usp=sharing
490 — Neural Network based inversion method: https://colab.research.google.com/drive/1wIJwG-DsJ63Qy3z-jyluX3tcyKxfrGlwd ?usp=sharing.

The neural network architectures are stored in .pt files, which can be read as tensors using the PyTorch library from Python, and can be
accessed with the command “torch.load(file.pt)”, the CVAE model used is in VAE_model/model_second_part_chla_centered.pt, which use
VAE_model/model_first_part.pt. The historical data is in the folder npy_data, and can be access using the library NumPy from python with

the command “np.load(file.npy)”; a description of each column is in the file README from the same folder.
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Appendix A

In this section, we expand the solution of Eq. (1) subject to the boundary conditions (5), under the homogeneity assumption.

First, for simplicity, we re-write Eq. (1) as,

dEg(h,\)
dh

dEgt(h,\)
dh

dEy(h,\)
dh

subject to,

= —Cd()\)Edir(h7 )‘)’
= —Cs(N)Eait(h, A) + Bu(N) Eu(h, A) + Fa(X) Eaie(h, 1),

= —Bs(A) Edgit(h, A) + C(A) By (hy ) — Ba(A\) Egir (R, M),

FEuir(0,0) = E9A™(0,\), Egie(0,\) = EQAS™M(0, 1), Ey(00,\) = 0,

were,
ca(\) = a(A\) +b(N)
cos
Co(\) = a(\) + rsbb())\’
)
_ b()\)u— rdbb()\)
Fa(A) = cosf
BQ(A) _ ’I"Sbb()\) 7
Cu(\) = a(A) +7rubp(N) 7
- Tdbb(A)u
Ba(¥) = cosf

(AD)

(A2)

Equation (Al) is a linear system of Ordinary Differential Equations, which can be solved by, first solving the equation for

Eqir(h, A), followed by solving the system of equations for Egr(h,A) and E,(h, ), taking the solution of Eg;(h,\) as the

in-homogeneous part of the system of equations. The final expresion is,

FEgic(h, \) = EQASM (0, \)e e
Egit(h,\) = cte 4 zgitEgir (b, A),
E,(h,\) = cTrte*h 4 YuLaic (R, A),
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where,

™ =BG (0,X) — zEGM (0, ),

kt=D-C,,
B,

+_ =5

r Pk

1

(=(Cu + ca)Fi — BuB)
"~ (ca—Cs)(ca+Cu)+ BBy’
_ (=BsFq+(=Cs +cq)Ba)
"~ (ca—Cy)(ca+Cy)+ BsB,

(A4)

For completes, in the case when the expression (cg—Cy)(cq+C,, )+ Bs B, = 0, then the expression for ¢t has to be exchange

to ¢ = EQASM(Q,\).

Appendix B: Tuning of the hyperparameter «

As seen in section 4, the final covariance matrix for the retrieve Z* depends on a thought X.. We selected the value of «
to fulfill two criteria, the final result for Z* should not depend on «, and the estimated uncertainty has to be close to the
discrepancy between retrieved data and in-situ observations.

For this end, we defined the error of the forward model €g, (o) as the Root Mean Square Difference between the satellite
Remote Sensing Reflectance and the predicted by the model. We expect this quantity to not depend on a.

We also defined the error between the predicted uncertainty and the actual discrepancy between model and data €5, (),
where the predicted uncertainty is estimated as the mean value of the standard deviation of the predicted chla™9PEL "and the

OBS and ChlaMODEL.

discrepancy between model and data is estimated as the Root Mean Square Difference between chla
We selected the parameter « that minimized this two errors.
We computed €g, _(a) and €5, (o) for different values of « until the curve e, () flattens. With the errors computed, we
re-scaled the error functions eg, _(«) and €5, (a) between zero and one in order to minimize both functions simultaneously by

minimizing the loss function

L =ep, () +es,,(), (B1)

where the line over the errors stand for the re-scaling. Figure B1 shows the final value of « selected, as a function of e, (),

€5, () and L%
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Figure B1. Illustration of how the hyper-parameter o was chosen. Using a higher o decreases the Root Mean Square Difference between

the Remote Sensing Reflectance observed by satellite, and the one obtained with the model (a), but increases the error between the predicted

uncertainty and the actual discrepancy between model and data (b). The value chosen was the one that minimized the £ loss function (c).

Appendix C

In this section, we show that Lgpo is a lower bound of the data log-likelihood, first, we write the expression for the log-

likelihood, by marginalizing over all possible values of the latent variable z

log (pa (1)) = log / pa(yl2)p(2)dz |,
Z

next we introduce the parameterized probability distribution g, (z|y)

~tog | [ pA<y|z>jj;(z'y’p<z>dz ,
=z

finally, we use Jensen inequality to find a lower bound of the log-likelihood,

> Z/ log (%)%(z«wdz

_ / 1Og( p(2) )q¢(z|y)+ / log (pa(y]2))as (=ly)d=
Zz z

q¢(2|y)

= —Dr1(qs(2[y)lIp(2)) + Eq, (z1y) [log (pa (y]2)]

=LELBO,
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Appendix D

In this section we include the Root Mean Square Error (RMSE), Pearson correlation coefficients (p) and relative Median
Absolute Deviation (rMAD) for all the measurements and observations, using the MAP estimates with unperturbed parameters,
MAP estimate with parameters from the MCMC algorithm, MAP estimate with parameters from the SGVB framework, and
outputs from the SGVB framework. All the quantities are computed using only the test data, which is the 10% of the data that
was not used in the MCMC algorithm nor in the training of the neural network. We also include supplementary figures, with

the 2012 timelines comparing the historical data with the output of the MAP estimates and the SGVB framework. Finally, we

include tables with the symbols used across this work.

Table D1. Root Mean Square Error between satellite and in-situ observations, and the modeled data using the Maximum A-posterior (MAP)

estimate with unperturbed parameters, optimized parameters with the MCMC algorithm, optimized parameters with the SGVB framework,

and modeled data purely with the SGVB framework.

Root Mean Square Error, RMSE(OBS,MOD) = \/MEAN ((OBS — MOD)?2)

MAP with unper- MAP with MCMC pa- MAP with SGVB pa-

turbed parameters rameters rameters SGVB output
RRrsa12.5 0.000319 0.000151 0.000218 0.000646
RRrs142.5 0.000117 0.000115 0.000120 0.000553
RRs,490 0.000246 0.000062 0.000090 0.000413
RRrs510 0.000078 0.000065 0.000108 0.000242
RRrs,555 0.000067 0.000046 0.000044 0.000191
kd,a12.5 0.044358 0.044922 0.048587 0.049591
ka,442.5 0.031283 0.028478 0.031518 0.033641
kd,490 0.026799 0.023269 0.025459 0.026724
ka,510 0.021233 0.018798 0.020363 0.020633
ka,555 0.014163 0.013240 0.013648 0.014121
by, p,442.5 0.000811 0.000680 0.000549 0.000561
by, p,490 0.000640 0.000609 0.000650 0.000694
by, p,555 0.000497 0.000480 0.000551 0.000570
chla 0.406792 0.334460 0.299325 0.274626
Total 0.54740 0.46537 0.44123 0.42321
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Table D2. Pearson correlation coefficient r between satellite and in-situ observations, and the modeled data using the Maximum A-posterior
(MAP) estimate with unperturbed parameters, optimized parameters with the MCMC algorithm, optimized parameters with the SGVB

framework, and modeled data purely with the SGVB framework.

Spearman rank-order correlation coefficient p

MAP with unper- MAP with MCMC pa- MAP with SGVB pa-

SGVB output

turbed parameters rameters rameters
Rps,a12.5 0.98340 0.99730 0.99065 0.96225
RRs,142.5 0.99710 0.99863 0.99738 0.97320
RRs,190 0.98461 0.99737 0.99604 0.94149
Rrs,510 0.98336 0.99061 0.97535 0.79347
RrRs,555 0.97605 0.99331 0.98685 0.81142
kd,a12.5 0.79925 0.80544 0.80709 0.80948
kd,a42.5 0.88829 0.87788 0.88310 0.86992
kd,a90 0.84538 0.84020 0.84458 0.83217
ka,510 0.85079 0.85049 0.85378 0.83961
ka,555 0.66704 0.63792 0.66600 0.63839
bp,p,442.5 0.65712 0.68309 0.70253 0.70185
bb,p,490 0.53494 0.59123 0.61175 0.63218
bb,p,555 0.65638 0.68457 0.69387 0.69072
chla 0.70004 0.83500 0.85845 0.88942
Total 11.52375 11.78302 11.86742 11.38557
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Table D3. relative Median Absolute Deviation (rtMAD) between satellite and in-situ observations, and the modeled data using the Maximum
A-posterior (MAP) estimate with unperturbed parameters, optimized parameters with the MCMC algorithm, optimized parameters with the

SGVB framework, and modeled data purely with the SGVB framework.

rMAD = MEAN(|OBS — MOD|/OBS)
MAP with unper- MAP with MCMC pa- MAP with SGVB pa-

SGVB output

turbed parameters rameters rameters

Rps,a12.5 0.046498 0.022824 0.023695 0.104053
RRs,142.5 0.019152 0.020253 0.018087 0.092863
RRs,190 0.048393 0.012281 0.017828 0.084470
Rrs,510 0.022621 0.019014 0.027908 0.056772
RpRs,555 0.028433 0.023294 0.018036 0.085871
kd,a12.5 0.275663 0.277158 0.307413 0.319424
kd,a42.5 0.238534 0.230608 0.243371 0.291961
kd,a90 0.240852 0.220262 0.229272 0.253470
ka,510 0.175974 0.180554 0.176727 0.176630
ka,555 0.106287 0.106784 0.104700 0.105321
bp,p,442.5 0.350718 0.285072 0.244496 0.259961
bb,p,490 0.345372 0.399523 0.545586 0.505087
bb,p,555 0.371178 0.410633 0.578075 0.573776
chla 0.552390 0.572383 0.474861 0.283325
Total 2.82207 2.78064 3.01006 3.19298
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Figure D1. The 2012 time series for the chlorophyll-« (a), Non-Algal Particles (b) and Chromophoric Dissolved Organic Matter (c). For all

the timelines, the black points are the in-situ observations from the BOUSSOLE buoy, the blue points are the MAP output with uncertainty

(blue shadow), using the optimal parameters from the SGVB framework algorithm, and the red points are the output of the SGVB framework.
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Figure D2. The 2012 time series for downward light attenuation coefficient (kq(\)), wavelengths A = 412.5 (a), A = 442.5 (b), A = 490 (c),
A =510 (d) and A = 555 (e). For all the timelines, the black points are the in-situ observations from the BOUSSOLE buoy, the blue points
are the MAP output with uncertainty (blue shadow), using the optimal parameters from the SGVB framework algorithm, and the red points

are the output of the SGVB framework.
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Figure D3. The 2012 time series for particulate backward scattering coefficient for the wavelengths A = 442.5 (a), A = 490 (b) and A = 555

(c). For all the timelines, the black points are the in-situ observations from the BOUSSOLE buoy, the blue points are the MAP output with

uncertainty (blue shadow), using the optimal parameters from the SGVB framework algorithm, and the red points are the output of the SGVB

framework.
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Table D4. Table of Symbols used for the Radiative Transfer Model.

Symbol Meaning

FEair Vertical Direct irradiance

Far Vertical scattered downward irradiance

E, Vertical scattered upward irradiance

0 Sun zenith angle

h depth at which a measurement is assumed to be taken.

A Wavelength at which a measurement is assumed to be taken.
a(N) Total absorption coefficient

b(\) Total scattering coefficient

by () Total backward scattering coefficient

w Water

phy Phytoplankton

chla Chlorophyll-o

CDOM Chromophoric Dissolved Organic Matter

NAP Non Algal Particles

aw(A) Water-specific absorption coefficient

Aphy (N) Chlorophyll-specific absorption coefficient of phytoplankton
acoom () Mass-specific absorption coefficient of CDOM

anap(A) Mass-specific absorption coefficient of NAP

bw(A) Water-specific scattering coefficient

bphy (A) Carbon-specific scattering coefficient of phytoplankton
bnap(A) Mass-specific scattering coefficient of NAP

bo,w(A) Water-specific backward scattering coefficient

bb,phy (A) Carbon-specific backward scattering coefficient of phytoplankton
by Nap(A) Mass-specific backward scattering coefficient of NAP

PAR Photosynthetic Available Radiation

Eg>™(0,))
Egr>™(0,))
Ey(00,N)
R,

bo.p
ka

Direct downward irradiance on the surface of the ocean, from the OASIM model
Scattered downward irradiance on the surface of the ocean, from the OASIM model
Scattered upward irradiance on the floor of the ocean

Remote Sensing Reflectance

Particulate backward scattering coefficient

Downward light attenuation coefficient
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Table DS. Table of Symbols and notation used for the Bayes formalism.

Symbol Meaning

Yy Vector, discretization of a continuous function in discrete values of A

Y Component of a vector with magnitude y(\)

z* Optimal value of a retrieved quantity z, solution of a minimization problem
Z Estimation of the optimal value of a quantity z

argmin, £(z)  Quantity z that minimized the loss function £

argmax,,p(y|z)

Z

pa(ylz,x)
N, %)
HOBS
HMODEL

H

Id

ﬁH

Quantity z that maximises the likelihood p(y|z)

Remote Sensing Reflectance data from day d

OASIM data from day d

Optical constituents from day d

Set of parameters from the forward model

Set of many days with Remote Sensing Reflectance data,which represents the train set when is
used for training, and the test set when is used for testing

Set of many days with OASIM data, which represents the train set when is used for training, and
the test set when is used for testing

Set of many days with retrieved optical constituents, which represents the train set when is used
for training, and the test set when is used for testing

Probability distribution of the variable y conditional on z, and @, as a function of A

Gaussian probability distribution with mean p and covariance matrix X

in-situ observations

Model of the in-situ observations

Observation operator, equal to H OBS \when there were observations, and zero otherwise
Presence-absence nine dimension indicator function

Loss function used to minimize the distance between in-situ observations and predicted observa-
tions

Loss function used to maximize the posterior probability pa (E”Z|y"l7 :cd) for every day d

optical constituents with the change of variable Z = log (2)

Covariance matrix of the Remote Sensing Reflectance

Noise of the Remote Sensing Reflectance

Perturbations on the parameters

Gradient over every component of ¢

Covariance of the prior term associated to the optical constituents 3, = a1, 1 the identity matrix
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Table D6. Table of Symbols and notation used for the SGVB formalism.

Symbol Meaning

zZ Latent variable sampled from an unknown distribution pa= (z)

y Random variable sampled from a known conditional distribution pa =« (y|z)
pa(y) data-Likelihood of the parameter A

pa(zly) Posterior probability of the latent variable z

g6 (z|y) Estimate of the posterior probability of the latent variable z

LELBO ELBO loss function, where ELBO stands for “Evidence Lower Bound”

Drr(gs(|y)llpa(2))

Eq, (2w [log(pa(y|2))]

Kullback-Leibler divergence between the two probability distributions g4 (z|y) and
pa(2)
Expected value of log(pa (y|z)) with respect to the probability distribution g¢(z|y)
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